Phase-enhanced Defect Sensitivity for EUV Mask Inspection

Yow-Gwo (Henry) Wang

Ryan Miyakawa, Weilun Chao, David Johnson, Alex Donoghue, Antoine Wojdyla, Markus Benk, Kenneth Goldberg, Andy Neureuther, and Patrick Naulleau

- 1. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley
- 2. Center for X-ray Optics, Lawrence Berkeley National Laboratory

Big picture

- Demonstration of Zernike phase contrast method on SHARP EUV microscope will be presented.
 - Zernike phase contrast method can get better phase defect sensitivity at focus.
 - Apodization in the pupil plane can mitigate the speckle noise and improve the SNR of the defect measurement.

Motivation

- > Defect-free EUV mask is needed for the industry:
 - Problem: Phase defect on EUV mask is invisible at focus.
 - Current solution: Through-focus inspection.
 - New solution: Zernike phase contrast microscope.

Zernike phase contrast method: Single scan at focus with better defect sensitivity

Conventional microscope

Zernike phase contrast microscope

Simulation verification: In-focus inspection with larger defect signal

Pit (Phase contrast method)
Bump (Phase contrast method)
Bump (Conventional method)

- Defect Type: Height = 1nm. FWHM = 60nm.
- Illumination: NA= 0.2, Sigma: 0.5.

Phase shift + Apodization = Better SNR!

Bump Defect Gaussian FWHM: 60 nm H: 1 nm

Rough Surface Correlation length: 90 nm

DC part is phase-shifted and attenuated.

Better contrast!

Low frequency part is attenuated.

Smaller speckle noise!

Better Signal-to-Noise Ratio!

Simulation verification: Better SNR with phase contrast & apodization

	Conventional Microscope	Phase Contrast Microscope	Phase Contrast+ Apodization Microscope
SNR at Focus	1.08	7.63	21.17

- Defect Type: Bump. Height = 1nm. FWHM = 60nm.
 - Roughness: 77pm. System noise: 5%.
- ➤ Illumination: NA= 0.2, Sigma: 0.5.

SEMATECH zoneplate mask inspection microscope

Source: Synchrotron

Optics: Zoneplate-lenses

> 4xNA: 0.25 - 0.625

Sigma: Programmable

Customize design features (Phase shift/Apodization) on zoneplates!

Customized zoneplates

Standard

Phase contrast

Offset zones to create phase-shift.

Phase contrast + Apodization

Control angular duty cycle to reduce transmission.

SEM images of zoneplates: Different designs on zoneplates

➤ Phase shift zoneplate

Phase shift with apodization zoneplate

Experiment parameters

- > 4xNA: 0.33.
- > Sigma: **0.3 (Disk)** .
- > Phase shift:
 - **0** ° for standard zoneplate.
 - 90 ° for phase contrast zoneplate.
- > Apodization:
 - 23% intensity transmission.
- Mask: provided by Global Foundries.
- > Defect : **Native defect** on the substrate.

Disk Illumination

Phase shift/apodization

Aerial images comparison: Conventional vs. Phase contrast

Larger defect signal at focus by phase contrast method!

Larger defect signal at focus by phase contrast method

- > Defect Type: Native defect on the surface.
- Illumination: NA = 0.33 (4x), Sigma: 0.3.

Simulation verification: Asymmetric through-focus behavior by native defect

Phase/Amplitude defect IPhase defectPhase/Amplitude defect II

- Defect Type: Bump. Height = 1nm. FWHM = 60nm.
- Illumination: NA= 0.0825 (1x), Sigma: 0.3.

Aerial images comparison: Phase contrast vs. Phase contrast + Apodization

3-fold enhancement on defect signal by phase contrast and apodization.

Larger defect signal and better SNR at focus by phase contrast with apodization method

Phase contrast methodPhase contrast with apodization method

- Defect Type: Native defect on the surface.
- Illumination: NA = 0.33 (4x), Sigma: 0.3.

Table I: With or without apodization

	a) 90 degree 100 % transmission	b) 90 degree 24 % transmission	Ratio (b/a)
Reference Intensity (Unit: counts)	5951.6	1359.7	0.23
Speckle Noise (Normalized to 5951.6)	0.141	0.062	0.44
Defect Signal (Normalized to 5951.6)	1.72	1.20	0.70
SNR at Focus	12.2	19.4	1.59

The reduction of speckle noise improves the defect SNR!

Table II: SNR by experiment result

	Conventional Microscope	Phase Contrast Microscope	Phase Contrast+ Apodization Microscope
SNR at Focus	11.8	12.2	19.4
Peak SNR	11.8 (Δz = 0 um)	17.5 ($\Delta z = -1.0 \text{ um}$)	24.38 (Δz = -1.0 um)

- > Defect Type: Native defect on the surface.
- ightharpoonup Illumination: NA = 0.33 (4x), Sigma: 0.3.

zoneplate.lbl.gov

Summary

- ➤ In-focus inspection of native defect has been demonstrated on SHARP EUV microscope by phase contrast method.
- Phase contrast method can improve the defect sensitivity at focus for defect with both phase/amplitude features.
- Native defect SNR can reach 20 at focus by adding phase shift and reducing transmission in the pupil.

Acknowledgement

> UC Berkeley:

Aamod, Rene, Suchit, and Prof. Laura Waller.

Thanks for your attention!

